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Abstract: Strongly warped regions, also known as throats, are a common feature of

the type IIB string theory landscape. If one of the throats is heated during cosmological

evolution, the energy is subsequently transferred to other throats or to massless fields in

the unwarped bulk of the Calabi-Yau orientifold. This energy transfer proceeds either by

Hawking radiation from the black hole horizon in the heated throat or, at later times, by

the decay of throat-localized Kaluza-Klein states. In both cases, we calculate in a 10d setup

the energy transfer rate (respectively decay rate) as a function of the AdS scales of the

throats and of their relative distance. Compared to existing results based on 5d models,

we find a significant suppression of the energy transfer rates if the size of the embedding

Calabi-Yau orientifold is much larger than the AdS radii of the throats. This effect can be

partially compensated by a small distance between the throats. These results are relevant,

e.g., for the analysis of reheating after brane inflation. Our calculation employs the dual

gauge theory picture in which each throat is described by a strongly coupled 4d gauge

theory, the degrees of freedom of which are localized at a certain position in the compact

space.
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1. Introduction

Strongly warped regions or throats are a common feature of the landscape of type IIB string

theory. More specifically, local geometries which are similar to the Klebanov-Strassler

throat [1] arise naturally in flux compactifications [2] (see also [3]) and the distribution of

vacua favours geometries with dynamically generated large hierarchies [4]. Under certain

assumptions, this can even be turned into a prediction for the statistical distribution of

multi-throat configurations [5].

Multi-throat compactifications have been considered earlier [6, 7] on the basis of the

simpler Randall-Sundrum model [8], which realizes the essential features of the Klebanov-

Strassler throat in a 5d geometry. Cosmological implications of the energy transfer between

throats have been studied by a number of authors [9 – 12, 14, 13, 15]. An important

motivation for the analysis of cosmologies with heated throats comes from the possibility

of realizing brane inflation in the strongly warped region of the compact manifold [16].

In the present paper, we focus on the energy transfer between different throats in

a given type IIB compactification. If one of the throats is heated during cosmological

evolution, the energy is subsequently transferred to other throats or to massless fields in the

unwarped bulk of the Calabi-Yau orientifold. This energy transfer proceeds in two ways. If

the temperature in a given throat is high enough, it develops a black hole horizon [17, 18]

and energy is lost by Hawking radiation. When the temperature drops below a critical

temperature Tc, a finite throat undergoes a phase transition during which the black hole

horizon is replaced by the infrared cutoff region of the throat [19, 18, 20]. Subsequently,
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the throat sector contains a non-relativistic gas of Kaluza-Klein (KK) modes which decay

to other throats in the Calabi-Yau orientifold.

In both cases, we calculate the energy transfer rate (respectively decay rate) as a

function of the AdS scales of the throats and of their relative distance. For the decay rate,

we also demonstrate how to determine its dependence on angular quantum numbers of the

decaying KK modes. Moreover, we extend the analysis of [6] to a genuine 10d setup (for

earlier related work see [14, 13]). To this end, we consider two AdS5×S5 throats embedded

in a 6-dimensional torus. This is a simplified model, but we argue that our results remain

parametrically correct also for more general geometries. As compared to [6], we find a

significant suppression of the energy transfer rates if the size of the embedding Calabi-Yau

orientifold is much larger than the AdS radii of the throats. This effect can be partially

compensated by a small distance between the throats. These results are relevant, e.g., for

the analysis of reheating after brane inflation.

It has been shown in [21, 22] that the absorption cross sections for scalars and trans-

versely polarized gravitons by an AdS5×S5 throat agree with those by a stack of N D3-

branes (for appropriate N). The fact that this agreement is exact in spite of the use of

leading-order perturbation theory in the strongly coupled regime on the gauge theory side

is explained by a non-renormalization theorem [29]. Motivated by these results, we employ

the dual gauge theory picture in which each throat is described by the world-volume gauge

theory on the corresponding stack of D3-branes. The world-volume theories on different

D3-brane stacks are coupled by the supergravity fields in the embedding manifold. The

decay and energy transfer rates then follow from the appropriate quantum-field-theory tree-

level diagrams. This calculation is considerably simpler than the corresponding analysis in

the gravity picture, where one has to solve multi-dimensional tunneling problems.

We will use the above equivalence of the gravity and gauge theory picture also for

non-zero temperature, where the non-renormalization theorem is violated. However, as we

will show, this only leads to O(1) uncertainties. The same is true for the generalization

to the Klebanov-Strassler (approximate AdS5×T1,1) throat. Given that we are anyway

ignorant about the detailed geometry of the bulk space and of the specific throats which

may appear in realistic models, we can tolerate this uncertainty.

We emphasize that, although we refer to throats and the corresponding large-N D-

brane stacks throughout the text, our results also apply to stacks of fewer branes. This may

be useful for the analysis of the cosmology of a standard model which resides on D-branes

in the Calabi-Yau orientifold and heats up the surrounding throats.

Our paper is organized as follows. In section 2, we derive the energy loss of a heated

throat to another throat which is separated from the first one by a certain distance A

(cf. figure 1). This calculation is performed by modelling both throats by stacks of D3-

branes and replacing the compact space by a torus. It is then straightforward to derive

the energy transfer rate by summing over the contributions of bulk KK modes coupling

to both throats. The resulting parametric behaviour ∼ 1/A8 of the leading term remains

valid for more general 6d compact spaces and for more complicated throat geometries.

Section 3 describes an analogous calculation for the decay rate of KK modes localized

in one throat to fields in a distant throat. In the gauge theory picture, the decaying
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R1

R2

A

L

Figure 1: Two throats with radii R1 and R2

separated by a distance A inside a Calabi-

Yau orientifold of total size L.

Figure 2: Feynman diagram for the scatter-

ing of fields on one brane stack into fields on

another brane stack.

KK modes are represented by glueballs. Thus, we first derive the effective vertex for the

coupling of these glueballs to bulk fields. After that, the calculation proceeds analogously

to that in the previous section. Finally, we compare certain limiting cases of our result

with calculations in the gravity picture and with formulae from the literature.

Our conclusions are given in section 4, where we also outline possible applications of

our results. A relevant integral is evaluated in the appendix.

2. Energy transfer between two throats

Let us consider a compactification manifold containing two throats, one of which is heated

to a certain temperature T . An interesting quantity for cosmology is the rate of energy

transfer to the other throat. In the following, we will determine this rate using the descrip-

tion of the throats in terms of D-brane stacks. In this picture, a heated throat corresponds

to a heated world-volume gauge theory. The world-volume theories on the two brane stacks

are coupled by the supergravity fields in the embedding space. Thus, energy transfer be-

tween the two throats is, in this picture, due to processes of the type shown in figure 2,

where fields in the thermal plasma on one brane stack scatter into fields on the other brane

stack.

We will perform the corresponding calculation for a simple example – two semi-infinite

AdS5×S5 throats embedded in a 6-dimensional torus of uniform size L. These throats

are the near-horizon geometries of black 3-branes, which in turn correspond to stacks of

D3-branes (see e.g. [3, 23]). For each throat, the S5 radius R is related to the D-brane

number N by

R4 =
κ10N

2π5/2
. (2.1)

As it stands, this is not a consistent compactification since negative-charge objects are

needed to absorb the flux of the branes. However, in the course of our calculation we will
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argue that including these and other objects (e.g. further D-branes) as well as using a dif-

ferent embedding manifold and a different throat geometry only leads to O(1) corrections.

We will restrict our calculation to the mediation by the dilaton, the Ramond-Ramond

scalar and the graviton polarized parallel to the branes. In the gravity picture these three

fields satisfy the same wave equation [22]. Correspondingly, in the gauge theory picture

their effect in mediating energy transfer is parametrically the same.1 Hence, we can further

restrict our calculation to one of the three fields, which we take to be the dilaton. In

particular, we will not consider the effect of fermions living in the embedding manifold.

In fact, in [24] the absorption cross section of dilatinos by 3-branes was calculated and

found to agree with the result for the dilaton. Therefore, we expect the fermions to give

parametrically the same contribution as the fields that we consider.

The (low-energy) world-volume theory on N parallel D3-branes is N = 4 U(N) super

Yang-Mills. Its field content is given by the field strength Fαβ in the adjoint represen-

tation, six adjoint scalars Xi corresponding to the positions of the branes, and fermionic

superpartners. The coupling between the dilaton and the field strength follows from the

standard 10d supergravity action with a stack of D3-branes (see e.g. [25])

S =
1

2κ2
10

∫

d10x
√

g

[

R− 1

2
(∂φ)2 + · · ·

]

+

∫

d4x

[

−1

4
e−φtrF 2

αβ + · · ·
]

, (2.2)

where, here and below, we work in the 10d Einstein frame. We ignore couplings to fermions,

since they are proportional to the fermionic equations of motion and thus give no contri-

butions to S-matrix elements [22]. Direct couplings between the dilaton φ and the scalars

Xi are absent. Canonically normalizing the dilaton kinetic term and allowing for brane

fluctuations, we get [21]

S ⊃ κ10

23/2

[

∫

d4xφ(x, 〈 ~X〉) trF 2
αβ +

∑

l

∫

d4x
κ

l/2
10

l!πl/4
(∂i1 · · · ∂ilφ) tr

(

Xi1 · · ·Xil F 2
αβ

)

]

,

(2.3)

where 〈 ~X〉 is the position of the brane stack. The Xi are also defined such that their kinetic

terms are canonically normalized. As can be seen from eq. (2.3), couplings involving the

Xi as well as Fαβ are suppressed by extra factors of κ
l/2
10 and can therefore be ignored.

2.1 Energy loss rate to flat 10d space

Before we proceed, we should check whether a calculation in terms of weakly coupled

gauge fields is a good approximation in the strongly coupled regime of the gauge theory.

At zero temperature, this is adequate due to the non-renormalization theorem derived

in [29]. However, the gauge theory is at finite temperature, which breaks supersymmetry.

With supersymmetry being broken, the non-renormalization theorem from [29] cannot be

expected to hold and it is not immediately clear why to trust our calculation. Therefore,

we analyse a simple example in both the gauge theory and the gravity picture and compare

1This can also be inferred from the relevant part of the DBI action, which couples them to the world-

volume theories on the D3-branes.
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the results. Namely, we consider a heated stack of D3-branes in flat 10d space which is

dual to a non-extremal black 3-brane and calculate the energy loss rate in both pictures.

We model the heated, strongly-coupled gauge theory on the D3-brane stack by a ther-

mal plasma of free fields. In principle, one would have to use finite temperature field theory

for the calculation of the energy loss rate. However, as we are only interested in the correct

order of magnitude, we can perform a zero-temperature calculation using a thermal particle

distribution in the initial state. Following from eq. (2.3), the cross section for scattering of

two gauge bosons into one dilaton is

σ ∼ κ2
10 s3 (2.4)

up to O(1) prefactors, where
√

s is the energy of the gauge bosons in the center of mass

frame. From eq. (2.4), we can calculate the rate of energy loss per world-volume of the

branes induced by this scattering process. This is done by thermally averaging the product

of cross section and lost energy, in analogy to the standard calculations of reaction rates

in a hot plasma [26, 27]:

ρ̇ =
1

2

∫

d3k1 d3k2 f(ω1) f(ω2)σv (ω1 + ω2) . (2.5)

Here

f(ω) =
1

4π3(eω/T − 1)
(2.6)

is the distribution function for the gauge bosons, v is the relative velocity of the colliding

particles, and T is the temperature of the heated gauge theory. Inserting eq. (2.4) into

eq. (2.5), we get the energy loss rate due to scattering of one gauge boson species. To get

the total energy loss rate, we have to sum over all species and polarizations. In a U(N)

gauge theory there are N2 gauge bosons. Thus, there is an extra factor of 2N2 coming

from the summation. Using eq. (2.1) and neglecting prefactors of order one coming from

the integration in eq. (2.5), we get

ρ̇ ∼ R8 T 13, (2.7)

where R is the AdS scale of the corresponding black 3-brane.

Energy loss from the non-extremal black 3-brane is due to Hawking radiation emitted

by its black hole horizon. The corresponding rate per brane world-volume ρ̇ is given by a

generalization of the Hawking formula (see e.g. [25]). If we restrict ourselves to the dilaton,

we get

ρ̇ =

∫

d9k

(2π)9
v ω σT (ω)

eω/T − 1
, (2.8)

where v is the velocity of the emitted particles and T is the Hawking temperature of the

horizon. The absorption cross section σT (ω) of a dilaton by a non-extremal black 3-brane

was calculated in [30]. The result is σT (ω) = σ0(ω) f(ω/T ), where ω is the energy of the

incident dilaton, f is some function of the dimensionless ratio ω/T , and σ0(ω) ∼ ω3R8 is

the absorption cross section by an extremal black 3-brane with AdS scale R which was

already determined in [21]. Inserting σT (ω) and performing the integral, we get

ρ̇ ∼ R8 T 13. (2.9)
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Here we have neglected prefactors of order one which come in particular from the integration

over f(ω/T ).

Both results for the energy loss rate, eqs. (2.7) and (2.9), agree up to O(1) factors.

Accordingly, a weak-coupling calculation in the gauge theory picture gives the right order

of magnitude. The crucial ingredient is the fact that the absorption cross section σT of

a dilaton by a non-extremal black 3-brane differs from the zero-temperature absorption

cross section σ0 only by a function of λ ≡ ω/T . By gauge/gravity duality, this means that

the gauge boson-dilaton vertex is corrected by a function of λ at non-zero temperature.2

Accordingly, the cross section for the process in figure 2 that we will calculate assuming

weak coupling and zero temperature has to be corrected by a function of λ. However,

inserting the corrected cross section into eq. (2.5) and performing the integral will just give

a different O(1) prefactor, which we ignore anyway.

2.2 Energy transfer rate to a different throat

Let us now calculate the cross section for the process in figure 2. To this end, we need the

KK expansion of the dilaton in a 6d torus,

φ(x, 〈 ~X〉) =
∑

~n∈Z6

1

L3
e2πi~n〈 ~X〉/L Φ~n(x), (2.10)

where L is the size of the torus and the expression is already evaluated at the position 〈 ~X〉
of one brane stack. The mass of the ~nth KK mode is m~n = 2π|~n|/L. Inserting eq. (2.10)

into eq. (2.3) and using κ10 = M−4
10 , one sees that the vertex for the ~nth KK mode in

figure 2 is

∼ s

M4
10 L3

e2πi~n〈 ~X〉/L. (2.11)

Here the energy in the center of mass frame of the gauge bosons is denoted by
√

s. Let 〈 ~X1〉
and 〈 ~X2〉 be the positions of the two brane stacks inside the T 6. If we denote the relative

distance of the stacks by ~A ≡ 〈 ~X2〉 − 〈 ~X1〉 and introduce the shorthand ~a ≡ 2π ~A/L, the

matrix element corresponding to the process in figure 2 is given by

M ∼ s2

M8
10 L6

∑

~n∈Z6

ei~n~a

s − m2
~n + iǫ

. (2.12)

We have ignored prefactors of order one. For phenomenological purposes, we can safely

assume
√

s < L−1. Namely, since the energy
√

s of the colliding gauge bosons is determined

by the temperature T of the heated gauge theory, this corresponds to T < L−1. If this were

not the case, the gauge theory would heat up the compact manifold and the geometrical

picture would be lost. Following from
√

s < L−1, one has s < m2
n for n > 0 and the

contribution of the energy
√

s in the propagator can be neglected for all but the zero

mode. Thus, eq. (2.12) simplifies to

M ∼ s2

M8
10 L4

∑′

~n∈Z6

ei~n~a

~n2
+

s

M8
10 L6

, (2.13)

2This is also the case if one takes finite-temperature effects properly into account on the gauge theory

side.
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where the prime denotes exclusion of ~n = ~0 in the sum. Since the 4d Planck scale is

determined by M2
4 ≃ M8

10L
6, the last term in eq. (2.13) simply reflects the fact that the

zero mode interacts with gravitational strength. The sum, which would be UV divergent

in absence of the exponential factor, is dominated by terms with large ~n. It can therefore

be approximated by an integral:

∫

d6n
ei~n~a

~n2
∼ 1

a4
. (2.14)

The r.h. side of eq. (2.14) results from the fact that the exponential function oscillates

quickly for |~n| & a−1 (a ≡ |~a|), effectively cutting off the integral.3 More precisely, we

evaluate a similar but more general integral, which we will need in section 3.2, in the

appendix. Equation (2.14) follows from this integral in a particular limit, which is displayed

in eq. (3.26).

Inserting eq. (2.14) into eq. 2.13, we find

M ∼ s2

M8
10 A4

+
s

M8
10 L6

, (2.15)

where A ≡ | ~A|. For an order-of-magnitude calculation, we can neglect the interference term

in |M|2. The cross section for the process in figure 2 then reads

σ ∼ s3

M16
10 A8

+
s

M16
10 L12

for
√

s < L−1 . (2.16)

Inserting this cross section into eq. (2.5), we get the energy loss rate due to scattering of

one particle species into another particle species. To get the total energy loss rate, we have

to sum over all initial and final state species and polarizations. Let us denote with N1 and

N2 the number of colors of the heated gauge theory and the gauge theory that is being

heated, respectively. The summation then gives extra factors of 2N2
1 and 2N2

2 and we get,

again neglecting prefactors of order one coming from the integration in eq. (2.5),

ρ̇ ∼ N2
1 N2

2

M16
10 A8

T 13 +
N2

1 N2
2

M16
10 L12

T 9. (2.17)

Using eq. (2.1), this can be written in a slightly more compact form. Denoting by R1 and

R2 the AdS scales of the corresponding throats, we arrive at the main result of this section:

ρ̇ ∼ R8
1R

8
2

A8
T 13 +

R8
1R

8
2

L12
T 9. (2.18)

An apparent limitation of our analysis is the assumption of a simple toroidal geometry

for the embedding space. This assumption was used to determine the spectrum and the

couplings of higher KK modes (which determine the first term in eqs. (2.13) and (2.18)).

By contrast, the coupling of the zero mode (which determines the second term in eqs. (2.13)

3One can see in particular that the sum in eq. (2.13) is effectively cut off before the geometry of the

throats becomes relevant, justifying our flat-space approximation.
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and (2.18)), depends only on the size of the embedding manifold and not on its geometry.

To see the relative importance of the terms more clearly, we rewrite eq. (2.18) as

ρ̇ ∼ R8
1R

8
2

A8
T 13

(

1 +

(

A

L

)8

(LT )−4

)

. (2.19)

If the throat-to-throat distance is large, A ∼ L, the second term dominates (recall that

LT < 1) and the precise geometry is irrelevant. By contrast, for small throat separation,

A ≪ L(LT )1/2, the contribution of the KK modes is dominant. In this case, the precise

geometry of the embedding manifold may in principle be relevant. However, it is then

natural to assume that the curvature scale in the region between the throats is smaller

than 1/A. Furthermore, as we have already pointed out above, the sum in eq. (2.13) is

dominated by contributions with |~n| ∼ L/A, corresponding to masses m~n ∼ A−1. Such

modes are only sensitive to the geometry at distance scales A in the vicinity of the two

throats, which we just argued to be approximately flat. Thus, the order of magnitude of

our result will remain correct in most relevant cases, even if the overall geometry is very

different from that of a torus.

In particular, we see that O-planes and further D-brane stacks will not change our

result as long as they are not too close to the two throats. Moreover, we can apply our

result to situations with one Klebanov-Strassler throat and one AdS5×S5 throat or with

two Klebanov-Strassler throats as long as the curvature scale of the space in between the

two throats is not much larger than 1/A.

In order for the calculation in terms of gauge fields to be justified, the temperature

of the heated throat has to be larger than its IR/confinement scale.4 One can then easily

see from the gravity picture that the finite length of the Klebanov-Strassler throats will

not change the result qualitatively. This is obvious for the heated throat since the black

hole horizon hides the IR region. For the throat to which the energy is transferred, the

argument is as follows: In the gravity picture, energy transfer is due to Hawking radiation,

which is emitted by the heated throat and subsequently absorbed by the other throat. But

only the geometry in the UV region of the throat is important for the absorption by (or,

equivalently, the tunneling into) that throat.

3. Decay of KK modes between two throats

Another interesting quantity for cosmology is the rate with which KK modes localized

in one throat decay to a different throat. This question has already received significant

attention in the literature (see [6, 9 – 12, 14, 13, 15]), mainly in the context of reheating after

brane-antibrane inflation. However, in all cases the calculations were done in the gravity

picture, whereas we will again (mainly) exploit the gauge theory point of view. This will

allow us to incorporate easily the dependence on the throat radii and the distance between

the throats. We compare the results from the literature with ours in section 3.3.

4Otherwise, the heated throat sector contains a non-relativistic gas of KK modes, whose decay rate to

the other throat will be determined in section 3.
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V/m2

~(mR)-1~ mR

R/r=z/R

-1

Figure 3: Feynman diagram for the decay of

a glueball in one throat into fields in another

throat.

Figure 4: Potential in the effective Schrö-

dinger equation for the dilaton in a throat.

3.1 The glueball decay vertex

We want to calculate the decay rate of glueballs on one brane stack into two gauge fields on

another brane stack. As in section 2, we perform the calculation for two D3-brane stacks in

a 6-dimensional torus of uniform size L. As before, we can argue that our result provides

the right order of magnitude also for more general geometries. The Feynman diagram for

the process is shown in figure 3. Due to the non-renormalization theorem described in the

introduction, we do not have to care whether the decay products will arrange into one or

more glueballs. The vertex for this part of the diagram is simply the one already derived

in eq. (2.11). However, the other vertex between a dilaton and a glueball can not so easily

be read off from the Lagrangian. Therefore, we make use of the gravity picture to calculate

the decay rate in a simpler situation. From this we will determine the vertex by demanding

that this decay rate agree with the gauge theory picture.

Namely, we consider a dilaton localized in a single AdS5×S5 throat which is embedded

into flat 10d space. This is the geometry of an extremal black 3-brane, the metric being

given by [31]

ds2 = f(r)−1/2
(

−dt2 + dx2
1 + dx2

2 + dx2
3

)

+ f(r)1/2
(

dr2 + r2dΩ2
5

)

with f(r) = 1 +
R4

r4
. (3.1)

In the near-horizon region, for r ≪ R, the warp factor reduces to f(r) ≃ R4/r4 and the

geometry is asymptotically AdS5×S5. Far from the horizon, for r ≫ R, the warp factor is

f(r) ≃ 1 and the geometry is asymptotically flat 10d space. In this situation, the AdS/CFT

conjecture is based on taking the near-horizon limit r → 0 and α′ → 0, while keeping r/α′

fixed. This effectively reduces the geometry to the AdS5×S5 part. In the equivalent

description by a stack of D3-branes in flat space, interactions between supergravity and

the world-volume theory vanish in this limit. This can be seen, e.g., from eq. (2.3), since

α′ → 0 implies κ10 ∼ gsα
′2 → 0 at finite gs. One then identifies states in the world-volume

gauge theory with eigenmodes of supergravity on AdS5×S5.

In our considerations, however, we want to retain the asymptotically flat part of the

geometry. What were previously the eigenmodes on AdS5×S5 will then become part of

– 9 –
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the spectrum of excitations in the full geometry, including excitations outside of the throat

region. This reflects the fact that, since we do not set α′ to zero, the gauge theory will

interact with the supergravity fields in the embedding space.

Such nonvanishing interactions lead to the decay of gauge theory states, to which we

refer as glueballs, into supergravity fields. This glueball decay has a simple counterpart

on the gravity side. Namely, excitations in the gauge theory correspond to excitations in

the throat region. The state dual to the glueball will therefore be a wave packet which is

localized in the throat. Due to the different time evolution of its constituent modes, this

wave packet will decohere after a certain time (see [15]). Hence, excitations will show up

in the asymptotically flat region as well, which is the analogue of glueball decay.

We will now determine the decay rate of a dilaton localized in the throat into flat 10d

space. To this end, we will assume the throat to be sharply cut off somewhere in the IR.

Such an AdS5×S5 throat with an IR cutoff might not exist as a solution to supergravity,

but it can serve as a simple toy model capturing the relevant information. Later on we will

show how to extend our results to realistic finite throats such as the Klebanov-Strassler

throat [1]. On the gauge theory side, the cutoff corresponds to a deformation by a relevant

operator, in which case the gauge theory has a discrete set of glueball states.

The wave equation for the dilaton is just the Laplace equation in the background

geometry:

∂M

(√
ggMN∂Nφ

)

= 0. (3.2)

Using eq. (3.1), one gets

[

r−5 d

dr
r5 d

dr
+ m2 +

m2R4

r4
− l(l + 4)

r2

]

φ(r) = 0, (3.3)

where l(l + 4) is the eigenvalue of the Laplacian on S5 and m2 is the eigenvalue of the 4d

d’Alembertian. We will call m the mass of the excitation. Choosing a new radial coordinate

z ≡ R2/r and introducing a redefined field φ̃ ≡ z−3/2φ, we arrive at

d2

dz2
φ̃(z) +

(

m2 − 15/4 + l(l + 4)

z2
+

m2R4

z4

)

φ̃(z) = 0. (3.4)

This has the form of a Schrödinger equation, the potential being given by the term

in brackets. A schematic plot of this potential is shown in figure 4. As one can see, a

wave coming from the near-horizon region (z → ∞ corresponding to r → 0) has to tunnel

through an effective barrier to reach the asymptotically flat region (z → 0 corresponding

to r → ∞).5 The tunneling probability P has been calculated in [21] (see also [14]) for

masses m ≪ R−1,

P ∼ (mR)8+4l , (3.5)

where we again neglect prefactors of order one.

5As we will see in section 3.3, by using cartesian coordinates for the torus, one again gets a Schrödinger-

like equation. However, in this case there is no barrier an incoming wave would have to tunnel through.

Instead, the reflection of a large part of the incoming wave is due to the steepness of the potential well.
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Although this result has been derived for a throat which is infinite in the IR direction,

we can still use it for a finite throat, as long as the mass m of the wave is not too small. For

a throat which is cut off in the IR at z = zIR, masses are quantized in units of mIR ≡ z−1
IR

such that mn ∼ n mIR with n an integer.6 The result of eq. (3.5) can then be trusted as

long as the wave function is not completely dominated by the unknown IR cutoff region.

This will be the case if n is sufficiently larger than 1.

The wave packet describing the glueball can be decomposed into a set of modes moving

in the IR direction and in the UV direction. If the barrier on the UV side were impenetrable,

the modes would be reflected entirely on the UV and IR side. However, since a small

fraction of the incoming flux is able to penetrate the barrier, the wave leaks out of the

throat. The incoming and outgoing fluxes at the barrier, jin and jout, determine the

tunneling probability P and the decay rate Γ:

P = 1 − jout/jin , Γ = jinP. (3.6)

Thus, a wave packet localized in the throat will decohere.

To determine Γ, we need solutions to eq. (3.4) describing waves which are reflected

back and forth between the UV barrier and the IR end of the throat. From these we can

calculate the incoming flux jin. We restrict ourselves to the case m ≪ R−1. In particular,

this means that zIR ≫ R, where z = R corresponds to the beginning of the throat region

(cf. eq. (3.1)). For z ≫ m−1 ≫ R, we can neglect the last two terms in the potential,

keeping only the constant term m2. In this limit, the solution is simply given by plane

waves:

φ̃ ≃ A cos mz + B sin mz. (3.7)

The approximation is valid for zIR ≥ z ≫ m−1 ∼ zIR/n. If n is not too small, the mode is

well approximated by a plane wave in a large portion of the throat. Deviations from this

form for z . zIR/n are due to reflection at and tunneling through the effective barrier.

To calculate jin from eq. (3.7), we have to determine the normalization of the solution

in physical terms. As a simplification, we consider a complex scalar and a plane wave

moving around an S1 parametrized by z ∈ [0, zIR). Going to the rest frame with respect to

momenta parallel to the brane and reinstating time dependence, we have

φ̃ = N eim(z+t) (3.8)

for the plane wave moving towards the UV barrier. To determine the normalization con-

stant N , we use the standard charge density for a Klein-Gordon particle, j0 = Im(φ̃∗∂t φ̃).

It has to be normalized according to

1 =

∫ zIR

0
dz j0 ⇒ N =

1√
mzIR

. (3.9)

6Solutions to eq. (3.4) in the throat region (z ≫ R) are φ̃ ≃ A
√

mzJl+2(mz) + B
√

mzYl+2(mz), where

A and B follow from the boundary condition on the UV side of the throat and from normalization. For

sufficiently large z, φ̃ behaves as φ̃ ∼ A cos mz + B sin mz. The quantization of m is a result of the boundary

condition for φ̃ or its first derivative at z = zIR.
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The flux is then given by jin = jz = Im(φ̃∗∂z φ̃). Using the solution of eq. (3.8) with the

normalization of eq. (3.9), we find

jin =
1

zIR

= mIR. (3.10)

Using this result and eq. (3.5), the decay rate of a glueball follows from eq. (3.6) as

Γ ∼ mIR(mR)8+4l. (3.11)

Now that we have the decay rate in the gravity picture, we need to define a vertex V

in the gauge theory picture which reproduces this result. We model the coupling by a term

L10d ⊃ V δ(6)( ~X − 〈 ~X〉)φ(x, 〈 ~X〉)G(x) (3.12)

in the 10d Lagrangian, where G denotes the glueball state with canonically normalized 4d

kinetic term. Compactifying the 6 dimensions perpendicular to the brane on a torus of size

L for the moment and using the KK mode decomposition of eq. (2.10), we get the effective

4d Lagrangian

L4d ⊃
∑

~n∈Z6

(

−1

2
∂µΦ~n ∂µΦ~n − 1

2
m2

~n Φ2
~n + e2πi~n〈 ~X〉/L V

L3
Φ~n(x)G(x)

)

. (3.13)

From this, the total decay rate of a glueball into KK modes of the dilaton follows:

Γ =
1

2ωi

1

L6

∑

~n∈Z6

∫

d3pf

(2π)3
1

2ωf
(2π)4 δ(4)(pf − pi) |V |2. (3.14)

In this formula, pf = pf‖ is a 4-vector characterizing the momentum of the final-state

dilaton parallel to the brane, while ωi and ωf are the energies of the initial and final

state. The 4-momentum of the decaying glueball is denoted by pi. Introducing the dilaton

momentum in the compact dimensions as ~pf⊥ = 2π ~n/L, we can replace the sum by an

integral when we go back to L → ∞:

1

L6

∑

~n∈Z6

−→
∫

d6pf⊥

(2π)6
. (3.15)

The decay rate of a glueball into a dilaton is then given by

Γ =
1

2ωi

∫

d6pf⊥

(2π)6

d3pf‖

(2π)3
1

2ωf
(2π)4 δ(4)(pf‖ − pi) |V |2 . (3.16)

Since the dilaton is massless, ωf =
√

|~pf⊥ |2 + |~pf‖ |2. Going to the rest frame of the glueball,

~pi = 0, and performing the momentum integrations, we arrive at

Γ =
1

2ωi

∫

d6pf⊥

(2π)6
1

2ωf
(2π) δ(ωf − ωi) |V |2 ∼ ω3

i |V |2 , (3.17)

where we have used ωf = |~pf⊥ | and neglected prefactors of order one. In its rest frame, ωi

is simply the mass m of the glueball. Comparing with eq. (3.11), we get

V ∼ √
mIRm m2+2lR4+2l. (3.18)
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3.2 Decay rate calculation in the gauge theory picture

With the effective vertex V at hand, calculating the decay rate of one glueball into gauge

fields living on a different brane stack is straightforward. Following from eqs. (3.13)

and (3.18), the vertex between a glueball and a KK mode of the dilaton is

V

L3
e2πi~n〈 ~X〉/L. (3.19)

The other vertex in the diagram is still given by eq. (2.11). Summing over all intermediate

KK modes, we arrive at an expression very similar to eq. (2.12):

M ∼
√

mIRm (mR)4+2l

M4
10 L6

∑

~n∈Z6

ei~n~a

m2 − m2
~n + iǫ

. (3.20)

Compared to eq. (2.12), the only difference is the prefactor and the substitution of the

energy
√

s of the colliding gauge bosons by the mass m of the glueball.

We will analyse eq. (3.20) in two different regimes, namely for m−1 > L and for

m−1 < L. The former case is the most interesting one from a phenomenological viewpoint.

As we argued in section 2, we can assume that the reheating temperature TRH in early

cosmology is smaller than L−1. Accordingly, the mass m of any relic KK modes is also

restricted by m < L−1. The latter case, on the other hand, can be easily analysed in the

gravity picture as well. We will perform this cross-check in section 3.3.

For m−1 > L, we can make the same simplifications as in eq. (2.13) and use eq. (2.14)

for the sum. The decay rate of a glueball into a pair of gauge bosons follows from the

standard 4d formula:

Γ ∼ m−1|M|2 . (3.21)

To get the total decay rate, we have to sum over the N2 final state gauge bosons. If we

denote by R1 and R2 the AdS scale of the throat containing the initial and the final state,

respectively, we find

Γ ∼ R8+4l
1 R8

2

A8
mIR m8+4l +

R8+4l
1 R8

2

L12
mIR m4+4l. (3.22)

Although the derivation of this decay rate assumed two AdS5×S5 throats and a torus

as embedding manifold, it can also be applied to more general geometries, according to

the discussion in section 2. However, for different throat geometries the dependence on

the eigenvalues of the angular Laplacian is of course different. These eigenvalues entered

the discussion through the tunneling probability eq. (3.5), from which we determined the

dilaton-glueball vertex in eq. (3.18). For the example of a Klebanov-Strassler throat [1], let

us outline how to determine the dilaton-glueball vertex for more general throat geometries.

Away from the bottom of the throat at r = rs, the warp factor of a Klebanov-Strassler

throat is well approximated by

A(r) = 1 +
R4 ln(r/rs)

r4
. (3.23)
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The effective AdS scale R depends on the number of fractional D3-branes at the conifold

singularity. The metric is still given by eq. (3.1) away from r = rs if one also replaces the

line element dΩ2
5 of a sphere by the line element of T 1,1. For R ≫ r ≫ rs, which defines

the throat region, the warp factor is approximately A ≃ R4 ln(r/rs)/r
4. For r ≫ R, where

the geometry is asymptotically a cone over T 1,1, we have A ≃ 1. Near r = rs, the geometry

differs considerably from eqs. (3.23) and (3.1) and the throat is cut off by the Klebanov-

Strassler region. For an order of magnitude estimate, one can neglect the logarithmic r

dependence of the warp factor away from r = rs and approximate the Klebanov-Strassler

region by a sharp cut off [32]. Thus, the tunneling probability from the throat into the

conical region can be (approximately) calculated from the effective Schrödinger equation,

eq. (3.4). The dependence on the eigenvalues of the Laplacian on T 1,1 enters through the

potential, where they replace the corresponding eigenvalues l(l + 4) on an S5. Moreover,

for an AdS warp factor and a sharp cut off, the incoming flux is given by eq. (3.10), as

before. From eq. (3.6), one can then determine the decay rate and match the vertex such

that this decay rate is reproduced.

Let us now consider the case m−1 ≪ L. We will also assume A ≪ L for simplicity.

Recalling that m~n = 2π|~n|/L and ~a = 2π ~A/L, we can approximate the sum in eq. (3.20)

by an integral,

1

L6

∑

~n∈Z6

e2πi ~A ~n/L

m2 − (2π)2~n2/L2 + iǫ
−→

∫

d6ρ

(2π)6
ei ~A ~ρ

m2 − ~ρ2 + iǫ
, (3.24)

where ~ρ ≡ 2π ~n/L. The resulting expression is just the propagator of a massless particle

in a mixed, energy-configuration-space representation, with the ‘energy’ m characterizing

the invariant 4-momentum. This is of course expected in the large L limit, where the torus

goes over to flat space and the infinite KK tower is replaced by the underlying higher-

dimensional dilaton field. The integral is evaluated in the appendix, the outcome being

∫

d6ρ

(2π)6
ei ~A ~ρ

m2 − ~ρ2 + iǫ
∼ m2

A2
H+

2 (mA), (3.25)

where H+
2 (x) = J2(x) + i Y2(x) is a Hankel function and we have neglected prefactors

of order one. Using the asymptotic forms of the Bessel functions for large and small

arguments, eq. (3.25) can be simplified as follows:

m2

A2
H+

2 (mA) ∼
{

m3/2

A5/2 ei mA for m−1 ≪ A
1

A4 for m−1 ≫ A .
(3.26)

Inserting these results in eq. (3.20), we get the matrix elements M for these two cases.

The corresponding partial decay rates follow from eq. (3.21). Summing over all final state

species, we find

Γ ∼







R8+4l
1

R8
2

A5 mIR m11+4l for m−1 ≪ A
R8+4l

1
R8

2

A8 mIR m8+4l for m−1 ≫ A
. (3.27)
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Again, the same discussion as before applies concerning the extension to more realistic

geometries. As a consistency check, we should examine, whether the appropriate limiting

cases of eqs. (3.22) and (3.27) coincide. The regions of validity of the two calculations have

a common border for A ≪ m−1 ∼ L. Indeed, for this choice of parameters the first term

in eq. (3.22) dominates and the result agrees with the second line of eq. (3.27).

3.3 Some calculations in the gravity picture

As in the sections before, we consider two AdS5×S5 throats embedded in a 6-dimensional

torus of uniform size L. The geometry is that of a multi-centered black 3-brane, the metric

being

ds2 = A−1/2
(

−dt2 + dx2
1 + dx2

2 + dx2
3

)

+ A1/2
(

dx2
4 + · · · + dx2

9

)

(3.28)

with

A(~x⊥) = 1 +
∑

~n∈Z6

(

R4
1

|~x⊥ − ~A1 + ~nL|4
+

R4
2

|~x⊥ − ~A2 + ~nL|4

)

. (3.29)

The positions of the two throats are denoted by ~A1 and ~A2, their AdS scales by R1 and R2.

The vector ~x⊥ refers to the coordinates x4, . . . , x9 in the torus. The sum in the warp factor

A(~x⊥) is due to mirror effects in the torus. Again, this is not a consistent compactfication.

Including O-planes, for example, would give extra contributions to the warp factor (see [3]).

We try to calculate the transition of a dilaton between different throat regions, which is the

gravity counterpart to the gauge theory calculation in sections 3.1 and 3.2. The equation

of motion for the dilaton is given in eq. (3.2). Inserting eq. (3.28) in eq. (3.2) and using√
g = A1/2, one gets

∂n ∂n φ + A(~x⊥) ∂µ ∂µ φ = 0. (3.30)

The indices µ and n run from 0 to 3 and from 4 to 9, respectively. Using the 4d Klein-

Gordon equation, one arrives at

∂n ∂n φ + A(~x⊥) m2 φ = 0, (3.31)

where m is the kinetic energy perpendicular to the branes. Like eq. (3.4), this has the form

of a Schrödinger equation. Contrary to eq. (3.4), however, there is no potential barrier sep-

arating the throat region and asymptotically flat space, since the potential V = −m2A(~x⊥)

is strictly negative. The difference comes from using cartesian coordinates perpendicular

to the branes in eq. (3.28) rather than spherical coordinates in eq. (3.1). Still, a wave in

the throat region, moving away from the horizon, is reflected to a large part before entering

asymptotically flat space. In cartesian coordinates, however, this is due to the steepness of

the potential well.

To determine the transition probability P of a dilaton between two throat regions,

one has to solve eq. (3.31) with appropriate boundary conditions. Then P is the ratio

of incoming flux in one throat and outgoing flux in the other throat. In general, the

corresponding calculation is difficult. However, if the torus is very large (L → ∞) and

the throats are sufficiently far apart (A ≫ m−1), the problem effectively splits into two

simpler calculations. Namely, the latter condition means that the de Broglie wavelength
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of the particle is small compared to the distance of the throats. A transition between two

throats can then be described as a two-step process. For simplicity, we take the initial

state in the first throat to be an s-wave. Only a small fraction of the outgoing flux reaches

the asymptotically flat region, the probability being (cf. eq. (3.5) for l = 0)

P1 ∼ (mR1)
8 . (3.32)

In between the two throats, one has a free spherical wave, approximating a plane wave

near the second throat. The absorption cross section (per brane world-volume) for such a

plane wave was calculated in [21]. Neglecting prefactors of order one, it reads

σ2 ∼ m3R8
2. (3.33)

Near the second throat, the incoming flux will be diluted by a factor of A−5, since the free

spherical wave is expanding in 6-dimensional flat space. The absorption probability by the

second throat thus is

P2 ∼ σ2

A5
∼ m3R8

2

A5
. (3.34)

The transition probability between the two throats is just the product P1P2. If we denote

by mIR the mass gap in the first throat, using eqs. (3.6) and (3.10) the decay rate from the

gravity calculation follows as

Γ ∼ R8
1R

8
2

A5
m11mIR. (3.35)

This is precisely what we found in eq. (3.27) for A ≫ m−1 and l = 0. The crucial

ingredient is the A−5 dependence. That it agrees in both calculations is, however, not

too surprising. In the gauge theory calculation, it came from the propagator in a mixed

energy-configuration-space representation (cf. eq. (3.24)). The same is of course true in the

above gravity calculation, although we have not stated it explicitly.

There is yet another situation where the decay rate between two throats is compara-

tively easy to obtain. Let us consider only one throat for the moment. We do not need to

specify the precise form, but will assume that it is finite and reasonably well approximated

by a slice of AdS5 times some compact manifold M. The prime example certainly is a

Klebanov-Strassler throat, whose interpretation as a stabilized Randall-Sundrum model

was given in [32]. Let us denote by R1 the (approximate) AdS scale of the throat and

by L the size of the embedding manifold, whose precise geometry is again not important.

One has L & R1, since otherwise the throat could not be glued into the manifold. If the

embedding manifold is of minimal size, L ∼ R1, KK modes with masses mn ≪ R−1
1 cannot

resolve its precise geometry. We can then describe the embedding manifold by the Planck

brane in a Randall-Sundrum model. Let us consider the Kaluza-Klein expansion of the

graviton in the throat. If we restrict ourselves to an s-wave with respect to the compact

manifold M multiplying the slice of AdS5, we can take the action from [33] obtained in
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the context of Randall-Sundrum phenomenology:7

S =

∫

d4x
∑

n

(

−1

2
∂αh(n)

µν ∂αhµν(n) − 1

2
m2

n h(n)
µν hµν(n) +

1√
2

gn
√

M3
5 R1

h(n)
µν T µν

)

. (3.36)

The effective 5d Planck scale M5 is determined by M3
5 ∼ M8

10R
5
1. We have included

the coupling of the KK modes h
(n)
µν to the energy-momentum tensor T µν on the Planck

brane, which we will need in a moment. For KK modes with mn ≪ R−1
1 , the masses are

determined by

J1(mn/mIR) ≃ 0 ⇒ mn ≃
(

n +
1

4

)

π mIR, (3.37)

where mIR = z−1
IR is the inverse conformal length of the throat (cf. section 3.1) and we have

used the asymptotic form for large arguments of the Bessel function J1. This is consistent

for n somewhat larger than 1. The coupling constants gn were calculated in [33], the result

being

gn =

(

(

Y1(mnR1)

Y1(mn/mIR)

)2

− 1

)−1/2

≃
√

π

2

√
mnmIR R1. (3.38)

In the last step we have used the asymptotic forms for the Bessel function Y1.

Let us return to the case of two throats and consider another throat in the embedding

manifold. We take the throat to be AdS5×S5 such that it can be equally well described by

a stack of D3-branes. Again, its AdS scale R2 cannot be larger than L, and since we have

assumed L ∼ R1, one has R1 & R2. The corresponding number N2 of D3-branes follows

from eq. (2.1) as N2 ∼ M4
10R

4
2. Now, when viewed from the first throat, the gauge theory

on the stack of N2 D3-branes resides on the Planck brane. Therefore, the graviton KK

modes in this throat couple directly to the energy-momentum tensor of the gauge theory.

Using the last term in eq. (3.36), the decay of these KK modes into the other throat can

be calculated as a decay into gauge fields.8 By the standard formula, the decay rate of a

KK mode with mass mn into one species of gauge fields is

Γ ∼ g2
n

M8
10R

6
1

m3
n. (3.39)

There are N2
2 gauge fields in the adjoint representation of U(N2). Summing and using

eqs. (3.38) and (2.1), the total decay rate follows:

Γ ∼ R8
2

R4
1

m4
n mIR. (3.40)

7The usual orbifold boundary conditions were taken for the derivation of coupling strengths and masses

of graviton KK modes. It is not immediately clear whether the same boundary conditions follow from a

reduction to 5d of a 10d geometry since the effective theory is defined on an interval instead of an S1/Z2

orbifold. However, one can rederive the Randall-Sundrum model on an interval if one takes Gibbons-

Hawking terms [34] at the IR and the UV brane into account. Varying with respect to the metric yields a

condition similar to the Israel junction condition, to be evaluated only at one side of the brane. Inserting

the background metric, one finds the relation between the cosmological constants on the brane and in the

bulk as well as the usual boundary conditions for the fluctuations (see e.g. [35] for a derivation of the Israel

junction condition using Gibbons-Hawking terms).
8There are also decays into the fermions and scalars in the gauge theory. However, the corresponding

decay rates have the same order of magnitude as the decay rate into gauge fields.
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This result should be compared with eq. (3.22) from the pure gauge theory calculation.

The distance A between the two throats cannot be smaller than their AdS scales R1 and

R2. Since we have also assumed L ∼ R1 and mn ≪ R−1
1 , the second term in eq. (3.22) is

dominant. Using l = 0 for the s-wave that we have considered and L ∼ R1, we get the

same result as eq. (3.40), including the factor of mIR!

The above process is just the reverse of the energy loss by the heated Planck brane

considered, e.g., in [27, 28]. Our calculation can also be viewed as a rephrasing, using

partly the gauge theory picture and partly the gravity picture, of the tunneling calculation

performed in [6]. In these papers, the decay rate of graviton KK modes between two throats

was calculated in a 5d model with two AdS5 slices which are glued together at a common

Planck brane, assuming equal AdS scales R1 = R2. However, besides giving the corrections

due to different AdS scales, from the above derivation it is maybe more evident why the

result is correct also in a genuine 10d setup.

The decay rate Γ ∼ (mR)4 mIR from [6] was used in a number of papers [9 – 12] in

the context of reheating after brane-antibrane inflation. Moreover, [15] contains a careful

analysis in a 5d model of effects related to the finite length of realistic throats. In this

paper, the global KK modes in the two-throat system are determined. Tunneling of KK

modes is then viewed as the decoherence of wave packets, which are set up in one throat.

We have used this picture in section 3.1.

Tunneling in a compact 10d setup with throats was considered in [13, 14]. In particular,

for the case m−1 > L, a decay rate of Γ ∼ (mR)16 mIR was derived, assuming that the

particle has to tunnel through two barriers described by the potential in eq. (3.4). We

see a conceptual problem with this approach since we do not know how to justify a 1-

dimensional quantum-mechanical picture (this 1 dimension being the radial coordinate) in

the two-throat case. But even if we accept this description for the moment, there are further

issues related to the two-barriers assumption: The barriers extend to values of r ∼ m−1

as can be seen from figure 4. Since m−1 ≫ R and r measures the physical distance for

r ≫ R (cf. eq. (3.1)), the width of each barrier is given by m−1. This just reflects the

fact that a particle with mass m has a de Broglie wavelength of m−1. Accordingly, the

particle has to tunnel through two entire barriers only if the distance A between the two

throats is ∼ 2m−1. Indeed, from eq. (3.22) for l = 0 and since L > A, we get a decay rate

of Γ ∼ (mR)16 mIR in this case, in agreement with [13, 14]. However, if A is smaller than

∼ 2m−1, the particle has to tunnel through a smaller barrier. Correspondingly, the decay

rate becomes larger, as can be seen from eq. (3.22).

4. Conclusions and outlook

We have determined the energy loss rate ρ̇ of a throat which is heated to a certain tem-

perature as well as the decay rate Γ of single KK modes localized in a given throat. As a

simplified setup we have chosen a 6-dimensional torus with two AdS5×S5 throats. How-

ever, as we have argued in section 2, our results stay parametrically correct for more

general embedding manifolds and throat geometries. Especially, they are applicable for
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two Klebanov-Strassler throats if the curvature of the space connecting them is not larger

than the inverse distance.

In earlier investigations [6, 9 – 12, 14, 13, 15] of the decay of KK modes between throats,

the decay/tunneling rate was determined from solving wave equations in a given gravity

background. Most results were derived for the simple model of two AdS5 slices, glued

together at a common Planck brane. As we have explained in section 3.3, this calculation

is difficult to perform in a genuine 10d setup. Inspired by [21], we instead chose the dual

gauge theory picture for our calculations. Namely, each AdS5×S5 throat can be equally

well described by a corresponding stack of D3-branes. Both brane stacks are coupled by

the supergravity fields in the embedding space. The energy transfer rate from a heated

throat then follows from simple tree-level quantum-field-theory processes. For the decay

rate of throat-localized KK modes which are dual to glueballs, we first had to determine

the glueball-supergravity vertex. To this end, we have calculated the decay rate of throat-

localized KK modes into flat 10d space in the gravity picture. Then, we have determined

the glueball-supergravity vertex by demanding that the decay rate following from this

vertex give the same result. We have also presented some cross-checks from the gravity

picture in section 3.3.

From our analysis, we were able to determine the dependence of the energy transfer and

decay rates on the distance A between two throats as well as on the size L of the embedding

manifold. For example, this is relevant for the analysis of reheating after brane-antibrane

inflation. In such models, one often considers inflation occurring in one throat, whereas

the standard model branes reside at the bottom of another, longer throat. In that way,

the generation of the right level of density fluctuations is reconciled with a solution of the

gauge hierarchy problem à la Randall-Sundrum. For a viable reheating of the standard

model sector, it is crucial that the energy from brane-antibrane annihilation is transferred

efficiently into the standard model throat. This question was analysed in [9 – 12, 14]. We

find that, as long as the embedding manifold is not of minimal size, the energy transfer

rate eq. (2.18) is considerably lower than the rates previously derived in [9 – 12] (but higher

than the rate of [14]). Given our results, it will be interesting to reconsider reheating after

brane-antibrane inflation.

Our results remain applicable if one deals with a small stack of D3-branes.9 An inter-

esting setup is the following: Consider that the standard model resides on some D-branes

in a given Calabi-Yau orientifold. Since they are a common feature of flux compactifica-

tions, such a manifold will typically contain several throats [5]. Modelling the standard

model branes by a small stack of D3-branes, we can estimate the rate of energy loss to the

throats in early cosmology from eq. (2.18). According to eq. (2.1), with N being small, we

just have to replace one factor of R8 by the corresponding power of the 10d Planck scale,

M−8
10 . The throat sectors, which are heated up in that way, may provide interesting dark

matter candidates [10, 14]. Later in cosmological evolution, throat-localized KK modes

may decay back to the standard model. The corresponding rate can be estimated from

9The sole exception is the decay rate of brane-localized states. In this case, our derivation of the vertex

from the gravity picture does not work, since supergravity is not a good approximation.
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eq. (3.22), again replacing R8
2 by M−8

10 . The decay rate strongly depends on the angular

momentum of the throat-localized KK modes. We have given this dependence explicitly

for the angular momentum with respect to an S5 in an AdS5×S5 throat. Moreover, we have

outlined how to determine this dependence for other manifolds, e.g. the (approximate) T1,1

in a Klebanov-Strassler throat. Depending on the cosmological epoch, the decaying KK

modes may influence the abundances of light elements or lead to diffuse gamma-ray back-

ground radiation, both effects being strongly constrained by observations (see e.g. [36]).

Along these lines it may even be possible to impose certain phenomenological constraints

on multi-throat compactifications.

More generally, one may discuss several cosmological scenarios where reheating takes

place either in the standard model sector or in a throat (as is the case after brane-antibrane

inflation) and the standard model resides either at the bottom of a throat or somewhere in

(the rest of) the Calabi-Yau orientifold. The energy transfer and decay rates that we have

calculated can then be used in a set of Boltzmann equations to determine the evolution

of energy densities of the standard model and throat sectors. We leave these interesting

applications for future work.
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A. Evaluation of the propagator

In eq. (3.24), we had to evaluate the following propagator in a mixed, energy-configuration-

space representation:
∫

d6ρ

(2π)6
ei ~A ~ρ

m2 − ~ρ2 + iǫ
. (A.1)

We perform the integral for imaginary values m → eiπ/2m and use analytic continuation.

The integral changes into

−
∫

d6ρ

(2π)6
ei ~A ~ρ

m2 + ~ρ2
. (A.2)

We can then employ the identity c−1 =
∫ ∞
0 dτe−cτ for Re c > 0 and get

−1

(2π)6

∫ ∞

0
dτ

∫

d6ρ ei ~A ~ρ e−(m2+~ρ2)τ (A.3)

=
−1

(2π)6

∫ ∞

0
dτ

([
∫

dρ1 eiA1 ρ1 e−ρ2
1
τ

]

· · ·
[
∫

dρ6 eiA6 ρ6 e−ρ2
6
τ

]

e−m2τ

)

=
−1

(4π)3

∫ ∞

0
dτ

1

τ3
e−A2/4τ e−m2τ .

We have used that A2 = A2
1 + · · · + A2

6. According to eq. 3.471.9 in [37], this integral can

be evaluated in terms of the modified Bessel function K−2 ≡ K2, which yields

−1

(2π)3
m2

A2
K2(mA). (A.4)
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Following from eq. 9.6.4 in [38], K2 is related to the Hankel function H+
2 = J2 + iY2. The

above expression can be written as

i

(4π)2
m2

A2
H+

2 (eiπ/2mA). (A.5)

The Hankel function has a branch cut along the negative real axis. Therefore, one can

analytically continue back to real values m → e−iπ/2m, which gives

−i

(4π)2
m2

A2
H+

2 (mA). (A.6)
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